- 軟件大小:12.99M
- 軟件語言:中文
- 軟件類型:國產軟件
- 軟件類別:免費軟件 / 電子圖書
- 更新時間:2016-05-21 13:01
- 運行環境:WinAll, WinXP
- 軟件等級:
- 軟件廠商:
- 官方網站:http://www.nesang.cn


18.66M/中文/10.0
24.38M/中文/0.0
18KB/中文/3.3
15.66M/中文/1.8
33.00M/中文/10.0
人教版高中數學必修4pdf是高中數學必修系列的第四本,普通高中數學可都是使用的該教材。綠色資源網帶來的是它的電子版,方便學生在電腦上學習。趕快下載使用吧!
《高中數學必修4》是2007年人民教育出版社出版圖書,新課標教材,必修系列中第4本,普通高中課程標準實驗教科書數學必修4 A版。
數學4(必修)的內容包括三角函數、平面向量、三角恒等變換。
三角函數是描述周期現象的重要數學模型,在數學和其他領域中具有重要的作用。這是學生在高中階段學習的最后一個基本初等函數。向量是近代數學中重要和基本的數學概念之一,它是溝通代數、幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理中都有廣泛的應用。三角恒等變換在數學中有一定的應用。
第一章 三角函數
1.1 任意角和弧度制
1.2 任意角的三角函數
閱讀與思考 三角學與天文學
1.3 三角函數的誘導公式
1.4 三角函數的圖象與性質
探究與發現 函數y=Asin(ωx+φ)及函數y=Acos(ωx+φ)
探究與發現 利用單位圓中的三角函數線研究正弦函數、余弦函數的性質
信息技術應用 利用正切線畫y=tanx,x∈(-π/2,π/2)
1.5 函數y=Asin(ωx+φ)的圖像
閱讀與思考 振幅、周期、頻率、相位
1.6 三角函數模型的簡單應用
小結
復習參考題
第二章 平面向量
2.1 平面向量的實際背景及基本概念
閱讀與思考 向量及向量符號的由來
2.2 平面向量的線性運算
2.3 平面向量的基本定理及坐標表示
2.4 平面向量的數量積
2.5 平面向量應用舉例
閱讀與思考 向量的運算(運算律)與圖形性質
小結
復習參考題
第三章 三角恒等變換
3.1 兩角和與差的正弦、余弦和正切公式
信息技術應用 利用信息技術制作三角函數表
3.2 簡單的三角恒等變換
小結
復習參考題
創設問題情境
充分利用三角函數、向量與學生已有經驗的聯系創設問題情景。
三角函數是描述周期現象的重要數學模型,向量也有豐富的物理與幾何背景。
在學生的已有經驗中,像日出日落,月圓月缺,春夏秋冬,24節氣,時針旋轉……都是日常經驗,對于這些周期變化現象及出現的原因,學生在地理課中都接觸過、學習過;單擺,圓周運動,彈簧振子……是學生在物理中學習過的,這些都是認識周期現象的變化規律,體會三角函數模型的意義的很好載體,教學中可以充分利用它們來創設三角函數的學習情境。
在學生的生活經驗和已有知識中,力、速度、加速度以及幾何中的有向線段等概念都是向量概念的原型,向量的運算的物理背景有力的合成、力的分解、運動做功等。教學中可利用這些背景創設情境,引導學生認識向量是物理、數學中的有力工具。
使用類比法,加強思想性
充分利用相關知識的聯系性,引導學生用類比的方法進行學習,加強教學的“思想性”。
三角函數與《數學1》的函數概念是一般與特殊的關系,教學中應當注意發揮學生頭腦中函數概念及在指數函數、對數函數的學習中建立的經驗的指導作用。通過聯系和類比,使學生明確三角函數與已有函數概念的共通性,同時認識三角函數的特殊性——描述周期現象的最有力的數學模型,從而明確需要研究的問題及其研究方法。
與學生熟悉的數量一樣,向量也是一個量,不過這個量有些特別,它既有大小又有方向。因為有大小,所以向量可以運算;因為有方向,所以向量可以用來刻畫點、直線、平面等幾何元素,也是研究幾何問題的有力工具——幾何中的向量法。因此,向量及其方法有非常強有力的類比對象——數量、解析法。教學中應當通過與數及其運算律的類比,讓學生明確平面向量中研究的基本問題及其研究方法,為向量的學習提供一個有力的知識、方法的認知固著點。
集合直觀,數形結合
充分發揮幾何直觀的作用,注重數形結合思想方法的運用。
在三角函數的教學中,要充分發揮單位圓的作用,并且要注意逐漸使學生形成用單位圓討論三角函數問題的意識和習慣,引導學生自主地用單位圓探索三角函數的有關性質,提高分析和解決問題的能力。向量的教學中,應當充分關注到向量既是代數的對象,又是幾何的對象的特點,利用向量的物理背景與幾何背景,加強幾何直觀,引導學生在代數、幾何和三角函數的聯系中學習向量知識。
弧度與三角函數的教學
把握教學要求,不搞復雜的、技巧性強的三角變換訓練。
弧度是學生比較難接受的概念,教學中應使學生體會弧度也是一種度量角的單位(圓周的1/2π所對的圓心角或周角的1/2π),隨著后續課程的學習,他們將會逐步理解這一概念,在此不必深究。
在三角恒等變換的教學中,兩角差的余弦公式的推導思路的獲得是一個難點。為此,“標準”明確提出利用向量的數量積推導兩角差的余弦公式,并由此公式推導出兩角和的余弦、兩角和與差的正弦、正切公式,二倍角的正弦、余弦、正切公式,教學中應當把握這種要求,不要因為用其他方法推導兩角差的余弦公式有較好的思維教育價值而作過多擴展(對于學有余力的學生,可以作為課外學習素材)。另外,教學中應鼓勵學生通過獨立探索和討論交流,推導積化和差、和差化積、半角公式,以此作為三角恒等變換的基本訓練,不要進行復雜的、技巧性強的三角恒等變換訓練。
另外,在三角函數中被刪減的內容(如任意角的余切、正割、余割,三角函數的奇偶性,已知三角函數求角,反三角函數符號等)以及降低要求的內容(如任意角概念,弧度制概念,同角三角函數的基本關系式,誘導公式等)都不要隨意補充或提高要求。
請描述您所遇到的錯誤,我們將盡快予以修正,謝謝!
*必填項,請輸入內容